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A B S T R A C T   

Pose estimation of construction workers is critical to ensuring safe construction and protecting construction 
workers from ergonomic risks. Computer vision (CV)-based 3D pose estimation for construction workers is 
increasingly used in ergonomic risk assessment (ERA) due to its considerable practicability and accuracy. 
Currently, the deficiencies of (1) dedicated datasets for construction activities and (2) informative 3D biome
chanical models to both Rapid Entire Body Analysis (REBA) and Rapid Upper Limb Analysis (RULA) impede the 
performance of CV-based ERA in construction sectors. Therefore, this study introduces a deep learning-based 
ERA by introducing a new dataset, ConstructionPose3D (CP3D), that follows a proposed 3D biomechanical 
skeletal model to support REBA and RULA. This dataset contains approximately 421,000 accurate 3D poses and 
annotations for construction activities. The results indicate that the proposed deep learning ERA models trained 
with CP3D outperform those without CP3D in accurately estimating the poses of construction workers, leading to 
improved ERA.   

1. Introduction 

Timely identification and response to workplace risks are essential to 
ensure workplace safety, health, and productivity [1,2]. Nearly 80% of 
worksite injuries are caused by unsafe operations [3]. Meanwhile, 
construction workers are often exposed to operations that can lead to 
forceful exertions, repetitive movements, and awkward body postures 
that often have an imperceptible but detrimental effect on their health 
[4]. The negative impact of these operations often leads to work-related 
musculoskeletal disorders (WMSDs) [5,6]. The Association of Workers’ 
Compensation Boards of Canada reports that the manufacturing and 
construction sectors had the second and third-highest number of lost- 
time injury claims in 2021, accounting for 13.6% and 10.4%, respec
tively [7]. The report also shows that the construction and 
manufacturing sectors had the highest numbers of fatalities in 2021, 
accounting for 19.6% and 16.7%, respectively [7]. The United States 
Bureau of Labor Statistics indicates that 30% of occupational injuries 
and illnesses were WMSDs in 2018 [8]. Therefore, proactive identifi
cation and prevention of WMSDs and health risks are profoundly 
beneficial. 

Traditional methods for worker safety and health management rely 

on human observation, self-reporting, and direct measurement [9–12], 
which are inevitably subjective, error-prone, invasive, and time- 
consuming [4,13]. For example, there are studies involving the direct 
measurement of workers through objective and responsive inertial 
measurement units (IMUs). Clearly, this invasive approach of equipping 
workers with additional devices amplifies the psychological load on 
them. Alternatively, indirect measures such as CV are preferable to 
alleviate the burden imposed on workers by invasive direct measure
ment methods, whereas monocular cameras are more feasible, consid
ering their lower price than depth cameras [14]. 

CV-based methods for ERA and WMSDs prevention are robust and 
cost-effective. Due to the objectivity, time-saving, and cost-effectiveness 
of CV-based methods, they have received much attention in recent years, 
especially those based on deep learning [10,15–20]. These methods 
have also become increasingly popular in the construction industry. 
However, deep learning-based methods come with a problem that must 
be addressed: to get high-accuracy models, extensive amounts of high- 
quality data are needed for training. As a result, researchers have 
created several 3D human pose datasets, such as the Human3.6 M [21], 
MuCo [22], and NTU RGB + D 120 [23]. Meanwhile, researchers have 
also created 2D datasets, including COCO [24] and MPII [25]. However, 
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most publicly available datasets primarily concentrate on the human 
pose estimation (HPE) of everyday activities and are not designed for 
construction activities. In addition, current publicly available datasets 
do not have comprehensive body joint information, such as details about 
hands. Therefore, ERA methods, such as REBA and RULA, which require 
such joint information to calculate risks contributed by strains from 
hands and wrists, cannot be applied accurately. In the context of CV- 
based deep learning methodologies, the utilization of a comprehensive 
dataset yields notable enhancements in terms of overall model gener
alization [26,27], overfitting prevention [28,29], and the effective 
handling of variations [30,31]. 

To address the lack of construction activity-specific 3D datasets with 
all coordinates required for REBA and RULA assessments, we introduce 
CP3D, a dataset obtained with an accurate retro-reflective marker-based 
motion capture (MoCap) system specifically designed for construction 
tasks. Unlike other datasets focusing on daily activities, CP3D focuses 
specifically on the poses of construction workers. With a high- 
performance motion capture system, the graphical and kinematic data 
were acquired by recording the activities of 5 male and 2 female subjects 
from 4 different perspectives (front, back, left, and right). With consent, 
we recorded and analyzed the workers’ activities for >50 h from mul
tiple angles and different work areas (University of Alberta ethics 
approval: Pro00111404) at several large construction facilities. As a 
result, the fourteen most frequent activities were selected and included 
in CP3D. CP3D fills a gap in the CV and ERA research communities that 
lack adequate 3D datasets designed for construction activities. For 
comprehensive data collection that fulfills thorough assessments of 
postural ergonomic risks, we additionally created a biomechanical 
model for the MoCap system. Datasets obtained from MoCap systems 
can represent human activities aggregated by a series of three- 
dimensional skeleton models [2]. With the help of the construction ac
tivity dataset, CV-based approaches [22,32–41] can extract human 
poses and activities from RGB videos or images [42] with higher pre
cision, thus further achieving the goal of assessing worker safety and 
health. Differing from the majority of existing ERA methods, our 
approach employs a 3D dataset to achieve greater accuracy, which is a 
rationale behind our proposal of CP3D as a dedicated 3D dataset. We 
trained and tested models based on ResNet-50 using CP3D and other 
publicly available datasets. The training of the models is based on 18 
specific 3D human joints to meet the needs of ERA tools. Both 3D and 2D 
datasets are used so that the model can infer 3D joint information from 
2D images. 

Furthermore, we introduce a CV-based ERA method that estimates 
REBA and RULA from monocular cameras. To the best of our knowledge, 
no CV-based ERA approach utilizes the same level of detailed 3D joint 
information as ours. The CV-based REBA approach [15] and CV-based 
RULA method are used to verify the performance of the CP3D bench
mark dataset. Our CV-based ERA method is meticulously tested on CP3D 
and other publicly available datasets, achieving comparable perfor
mance. The results suggest that the model, trained on a generic activity 
dataset, demonstrates lower accuracy in joint recognition and ERA for 
construction activity workers compared to our model’s performance. 
Our model, jointly trained using both CP3D and the generic activity 
dataset, exhibits better results in this context. The model trained with 
CP3D benchmark dataset achieves state-of-the-art performance with 
35% accuracy improvement and, equally importantly, improves the 
comprehensiveness and performance of existing publicly accessible 
generic datasets. CP3D offers a distinctive compilation of construction 
activities tailored for future deep learning methodologies within the 
realms of HPE and ERA in construction-related contexts. Encompassing 
approximately 421,000 samples with various construction activities, 
performers, and captured perspectives, the dataset is designed to elevate 
performance within this specific domain. Additionally, its integration 
with other datasets contributes to augmenting dataset diversity, spe
cifically catering to HPE and ERA. The inclusion of a wide range of 
construction scenarios aims to enhance overall model generalization, 

reduce the risk of overfitting, and adeptly handle variations, thereby 
facilitating future research across various industries. 

The study aims to address three major challenges. Firstly, existing 
datasets predominantly concentrate on daily human activities, lacking 
the essential support for enabling CV algorithms to learn distinctive 
features relevant to the activities of construction workers. This impedes 
further improvement of CV methods for the construction sector. Sec
ondly, there is a deficiency in biomechanical models for MoCap systems, 
specifically crafted to capture sufficient 3D joint information simulta
neously applicable to both REBA and RULA methodologies. Thirdly, 
prevailing CV-based REBA and RULA methods, which utilize monocular 
cameras, often rely on 2D joint information and lack the comprehensive 
joint details mandated by REBA and RULA, thus necessitating a more 
holistic approach. Hence, the contributions include (1) the development 
of a comprehensive 3D HPE/ERA dataset with around 421,000 frames 
designed explicitly for construction activities; (2) the development of a 
biomechanical skeletal model specifically for collecting 3D human pose 
data on construction activities; (3) the development of CV-based ERA 
approaches using REBA and RULA. The contributions are further dis
cussed in section 3. 

Table 1 shows the abbreviations and their corresponding definitions 
used in this study. 

2. Related work 

2.1. 3D HPE 

In the past decades, HPE based on CV has received compelling 
attention in the human pose recognition research field, and most of the 
progress has come from deep learning-based methods. HPE tasks can be 
broadly divided into 2D and 3D categories. Comprehensive reviews of 
2D and 3D HPE methods can be found in [43–50]. Since ERA tools such 
as REBA and RULA require a 3D posture representation of persons, 3D 
HPE is required. This can be implemented with different approaches 
[44], such as multiple monocular cameras or IMUs. In this study, we 
conduct multi-person 3D HPE from a monocular camera with a single 
view, representing the most common scenario in construction facilities. 
Approaches for multi-person 3D HPE from a monocular camera with a 
single view are generally classified into top-down and bottom-up ap
proaches [44–46,49,50].  

• Top-down approaches: This strategy involves using human detectors 
to identify the positions of individuals, followed by the separate 
detection of their joints. The first step in the top-down 3D multi- 
person HPE approach is to detect the presence of each person in 
the image. The 3D HPE deep learning method estimates the absolute 
root (pelvis) position of each detected person and their 3D root- 
relative pose. The complete pose is then converted to world co
ordinates using the estimated 3D pose and its corresponding root 
position. In top-down HPE methods, the ability of person detectors to 

Table 1 
Abbreviations and definitions.  

Abbreviations Definitions 

CV Computer Vision 
REBA Rapid Entire Body Analysis 
RULA Rapid Upper Limb Analysis 
CP3D ConstructionPose3D 
HPE Human Pose Estimation 
ERA Ergonomic Risk Assessment 
WMSDs Work-related Musculoskeletal Disorders 
IMUs Inertial Measurement Units 
MoCap Motion Capture 
CVRE Computer Vision-based REBA Estimation 
MPJPE Mean Per Joint Position Error 
DRWPA A deep learning-based RULA method for working posture 

assessment  
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recognize the edges of extensively overlapped human forms could be 
compromised. In 2017, Rogez et al. [51] proposed LCR-Net, an 
innovative end-to-end localization classification-regression frame
work. LCR-Net demonstrated robustness in controlled environment 
datasets but underperformed in in-the-wild datasets. This limitation 
was addressed by Rogez et al., using synthetic data for training in 
their LCR-Net++, which utilizes a pose proposal generator to pro
duce candidate poses for further classification [51]. The classified 
poses are then refined by a regressor in both 2D and 3D. Moon et al. 
[41] introduced a camera distance-aware framework comprising a 
human detector, a human root estimator, and a root-relative pose 
estimator. The framework can be fused with other human detectors 
and 3D human estimators.  

• Bottom-up approaches: Contrary to top-down approaches, bottom- 
up approaches first identify the depth map and each joint indepen
dently. Each joint is then associated with the corresponding human 
based on the depths of the root and the joints, enabling complete 
pose estimation. A primary challenge of bottom-up approaches is 
accurately grouping joints to their respective person. Furthermore, 
these approaches face significant difficulties in effectively connect
ing key joints within occluded scenes, which increases the 
complexity of key joint association. A multi-stage bottom-up 
framework proposed by Zanfir et al. [52] begins by estimating 
volumetric heatmaps to predict 3D joint locations. Limbs are then 
connected based on the confidence scores of the connections be
tween joints. In the final stage, skeleton grouping is employed to 
assign the limbs to the corresponding people. The approach intro
duced by Mehta et al. [22] utilizes the Occlusion-Robust Pose Map, 
which is capable of estimating human posture with high precision 
even in the presence of occlusions. They also introduced MuCo-3DHP 
and MuPoTS-3D, the first multi-person 3D dataset, for training and 
testing their method. 

Regarding performance, the top-down approach generally out
performs the bottom-up approach. Firstly, the bottom-up approach 
struggles to generate precise heat maps, leading to diminished posture 
estimation performance when the image is scaled. Additionally, it often 
fails to accurately predict the posture of individuals with smaller body 
sizes. Moreover, the bottom-up approach faces challenges in associating 
key points to specific human instances in confined environments. 
Consequently, this paper incorporates a top-down 3D HPE method into 
our ERA approach. 

2.2. 3D HPE datasets 

Owning to the advent of high-precision MoCap systems, the gener
ation of large-scale 3D HPE benchmark datasets has become more 
feasible. Table 2 below lists datasets that are widely used in 3D HPE. 
Human3.6 M is the most commonly used single-view 3D HPE dataset 
among the datasets. The dataset was collected from 6 professional male 
performers and 5 professional female actresses. The dataset consists of 
3.6 million human pose samples with 17 daily activities from 4 different 
views in a controlled lab environment. Although more 3D HPE datasets 
have been published after Human3.6 M and HumanEva, Human3.6 M 
and HumanEva are still the most widely used and standard benchmark 
datasets for 3D HPE [45,49]. It is worth mentioning that MuCo-3DHP is 
the first large publicly accessible multi-person 3D HPE dataset with over 
400,000 annotated frames. MuPoTS-3D is a relatively small dataset for 
testing. They were proposed by Mehta et al. [22] for training and testing 
their single-view 3D HPE method. CML is a relatively new 3D HPE 
dataset, and to the best of our knowledge, it is the only publicly available 
dataset centered on construction activities. However, CML is a combi
nation of other existing datasets, and that makes CML not as diverse and 
abundant as it should be. 

In contrast to daily activities, construction activities are more 
physically demanding and intricate and possess distinct human 

movement characteristics that set them apart from daily activities. In 
addition, construction activities include varying movements with a wide 
range and even a lot of movements with self-occlusions. Hence, applying 
generic daily activity datasets to construction scenarios will not bring 
optimal performance due to the lack of unique data patterns and char
acteristics for construction activities. Taking the widely used Human3.6 
M as an example, it has 15 activities in the entire dataset, which consists 
of 3.6 million annotated images. The 14 activities include ‘Directions,’ 
‘Discussion,’ ‘Greeting,’ ‘Posing,’ ‘Purchases,’ ‘Taking Photo,’ ‘Waiting,’ 
‘Walking,’ ‘Walking Dog,’ ‘Walking Pair,’ ‘Eating,’ ‘Phone Talk,’ 
‘Sitting,’ ‘Smoking,’ and ‘Sitting Down,’ which are not directly related to 
construction activities. 

Therefore, there is a need for a comprehensive dataset that empha
sizes the most frequent activities and adequate data that can cover the 
variations in the construction activities. The CV-based ERA is closely 
related to CV-based HPE. In this sense, the CP3D dataset developed in 
this study can be used alone or together with other datasets to train deep 
learning methods, thereby improving the action type breadth and ac
curacy of HPE. In addition, CP3D contains essential joint information (i. 
e., hand coordinates) that some datasets [21] might not have for more 
comprehensive ERAs. 

2.3. CV-based ERA 

According to the U.S. Occupational Safety and Health Administra
tion, ergonomic risks include repetition, awkward posture, forceful 
motion, stationary position, direct pressure, vibration, extreme 

Table 2 
Datasets for 3D HPE.  

Dataset Year #Frames #Subjects Resolution Context and 
Characteristics 

CML [2] 2022 >

146,000 
10 N/A Lab environment 

AMASS 
[53] 

2019 9 million 346 variable Unified 
parametrization 
of 15 datasets 

MuPoTS-3D 
[22] 

2018 8000 8 2048 ×
2048, 
1920 ×
1080 

Multi-person, “In 
the wild” 

3DPW [54] 2018 >

50,000 
7 N/A “In the wild,” 

single moving 
camera & IMUs 

DIP-IMU 
[55] 

2018 330,000 10 N/A Inertial 
Measurement 
Units 

MuCo- 
3DHP 
[22] 

2018 400,000 8 1024 ×
1024 

Multi-person 

MPI-INF- 
3DHP 
[25] 

2017 1.3 
million 

8 N/A “In the wild” & 
lab, marker-less 
ground truth 

Total 
Capture 
[56] 

2017 1.9 
million 

5 1920 ×
1080 

Lab environment, 
Inertial 
Measurement 
Units 

NTU +
RGBD 
120 [23] 

2016 >

114,000 
40 1920 ×

1080 
Office 
environment 

CMU 
Panoptic 
[57] 

2016 1.5 
million 

8 1920 ×
1080 

Lab environment 

TNT15 [58] 2016 13,000 4 800 × 600 Office 
environment, 
Inertial 
Measurement 
Units 

Human3.6 
M [21] 

2014 3.6 
million 

11 1000 ×
1000 

Lab environment 

HumanEva 
[59] 

2010 40,000 4 660 × 500 Lab environment  
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temperature, noise, and work stress [60]. The advantages of CV in visual 
information perception fit well with the visual ERA [15]. Although ERA 
has a long history of exploration, CV-based ERA has recently emerged 
due to advancements in the CV field. Similar to CV-based HPE, the CV- 
based ERA methods can also be categorized into 2D and 3D, depending 
on the category of human key point coordinates used to perform the 
ERA. These approaches focus only on ergonomic risks that can be 
visually identified. 

For accurate ERA, 3D information on workers’ joints is required. 
Table 3 shows some of the most recent CV-based 3D ERA approaches. 
It’s worth noting that only [15] can estimate ergonomic risks for mul
tiple people. Fan et al. [15] proposed the CV-based REBA Estimation 
(CVRE) that is based on 3D poses, which is further developed in this 
study for the ERA. 

REBA [66] and RULA [67] are the two commonly used quantitative 
observational ERA tools. RULA was originally proposed for rapid 
assessment of the strain/load imposed on the musculoskeletal system by 
postures, muscle functions, and external loads on the neck, trunk, and 
upper limbs. REBA, a similar posture analysis and ergonomic risk 
assessment tool, is sensitive to musculoskeletal risks of work tasks in a 
variety of occupations. A few researchers have applied their CV-based 
pose detections for ERA: CVRE is capable of CV-based 3D multi-person 
ERA [15]. CVRE includes a human detection module, a human key 
point estimation/detection module, a joint angle calculation module, a 
REBA score calculation module, and a feedback module. CVRE adopts 
the human key point estimation module from 3DMPPE [41]. Because 
3DMPPE is a 3D multi-person pose estimation approach, CVRE can 
inherently estimate ergonomic risks with 3D joint data for multiple 
people. Like CVRE, the CREBAS [16] utilizes CV to estimate ergonomic 
risks with 3D joint data. CREBAS uses the body detection model of 
MediaPipe, and the method sets body areas based on the positions of 
faces, which are detected by the face tracking model. The joint positions 
are estimated using the posture tracking model of MediaPipe. Finally, 
based on the 3D joint positions, CREBAS calculates the joint angles and 
uses these angles to calculate the REBA scores. In addition, a deep 
learning-based RULA method for working posture assessment (DRWPA) 
is a CV-based 3D ERA approach. DRWPA adopts the 3D HPE method 
[38] proposed by Martinez et al., which is a single-person-based method. 
Hence, DRWPA can only estimate ergonomic risk for single-person 
scenarios. Meanwhile, the dataset DRWPA uses Human3.6 M for 
training. Since Human3.6 M does not contain annotations of the hands, 
the accuracy of DRWPA-based RULA scores is sacrificed because of the 
loss of hand information. 

Therefore, the current CV-based ERA methods either rely solely on 
2D human pose information [19,68], lack hand coordinates, or are 
restricted to single-person scenarios. However, the nature of construc
tion work is closely tied to manually handling materials or using tools. 
Ergonomic risk assessment algorithms such as REBA and RULA neces
sitate the utilization of hand coordinates to compute parameters such as 
hand bending, hand side bending, and wrist twisting [66,67,69]. 
Consequently, datasets offering solely 2D joint coordinates or lacking 
sufficient hand coordinates fall short of fulfilling the criteria for a 

thorough ERA, especially using REBA and RULA [70]. More impor
tantly, to test the performance of the developed dataset in this paper 
within the ERA domain, it is necessary to employ a 3D ERA method that 
incorporates hand information. As a result, we propose a 3D ERA 
approach incorporating REBA and RULA for construction activities. 

3. Methodology 

Based on the aforementioned research gaps, this paper introduces a 
new dataset called CP3D, a new biomechanical skeletal model specif
ically for collecting 3D human body data on construction activities, and 
an ERA system for REBA and RULA estimations. As an overview, in step 
1, the MoCap system captures 3D coordinates and videos of the 14 
construction activities of the performers in the lab, and the CP3D dataset 
is created by using these collected 3D coordinates along with their video 
frames. In step 2, deep learning models are trained with the CP3D 
dataset. To test our method’s performance in identifying construction 
workers’ joints, the CP3D is divided into two parts for training and 
testing. In step 3, the deep learning models are used for HPE. To assess 
the impact of the dataset on estimating the poses of construction 
workers, we employ the methodology introduced in [15]. Specifically, 
two deep learning models are trained within this framework; one 
exclusively utilizes publicly available datasets for training, while the 
other incorporates CP3D in addition to the same public datasets. Sub
sequently, in step 4, the estimated poses from these two models are 
utilized for the computation of REBA and RULA risk scores. In step 5, the 
results of the risk assessment are derived by utilizing the REBA and 
RULA risk scores obtained in step 4. Additionally, the trained models are 
applied to the test data separately for method validation and perfor
mance testing. 

In the following steps, validation of the method and testing of the 
model performance is executed; the validation and testing procedures 
are threefold: (1) validation of HPE: the estimated joint angles (from CV- 
based CP3D-trained models) in the test partition and their correspond
ing ground truth joint angles (from MoCap system) are compared; (2) 
trained model testing: with MoCap as the ground truth, the Mean Per 
Joint Position Errors (MPJPE) for the test partition from deep learning 
trained models with and without CP3D dataset are obtained; (3) per
formance improvement validation: to validate that CP3D can improve 
the performance of models, we also compare the joint angle estimation 
performance of a deep learning model trained only using public datasets 
with a model trained jointly with CP3D. 

Fig. 1 shows our study’s methodological steps to estimate ergonomic 
risks, which will be further explained in the following sections. 

3.1. CP3D dataset 

Optical marker-based human MoCap systems are widely used to 
capture ground truth 3D coordinates for HPE datasets [47]. In this 
paper, we adopt a non-invasive marker-based MoCap for data collection, 
as such an approach does not impose additional psychological burdens 
on the worker/subject and has less interference with the worker’s tasks 
[15]. The data was collected using the Vicon MoCap system [71], con
sisting of eight Vicon Vero cameras and one Vicon Vue camera. The 
Vicon Vero cameras capture the 3D coordinates of the reflective markers 
by capturing the light signals reflected by the markers. Eight Vicon Vero 
cameras are used to ensure that the markers can be captured from 
multiple locations/directions in the lab. A Vicon Vue camera captures 
footage of subjects engaging in activities, and these recorded activities 
serve as the basis for generating the video frames in the CP3D dataset. 
The lab layout is shown in Fig. 2. 

The Vicon Vue and Vero cameras are set to a frequency of 100 Hz for 
synchronization. The Vicon MoCap system keeps track of the 48 retro- 
reflective markers on the performers. The biomechanical model used 
in CVRE for data collection is Plugin-Gait, but it does not contain all the 
joint information required by REBA and RULA. Therefore, we have 

Table 3 
Approaches for CV-based ERA.  

Approach Year 2D or 3D Pose Multi- 
person 

ERA method 

Jeong et al. [16] 2023 3D N/A REBA 
Fan et al. [15] 2022 3D Yes REBA 
Ciccarelli et al. [61] 2022 3D N/A RULA 
Li et al. [62] 2019 3D N/A RULA 
Yu et al. [63] 2019 3D N/A Workload 

analysis 
Parsa et al. [64] 2021 3D N/A REBA 

Yu et al. [65] 2018 3D N/A 
Workload 
analysis  
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created a new biomechanical model for adequate and accurate data 
collection and deployed it to the Vicon MoCap system. Furthermore, we 
also created a new algorithm to extract joint information. Fig. 3 shows 
the creation processes of the proposed CP3D, which corresponds to the 
first step in Fig. 1. Therefore, one of the objectives to develop a CV HPE/ 
ERA dataset designed explicitly for construction activities can be ach
ieved, which fills in the dataset gaps in construction fields. 

3.1.1. Activity selection 
Common construction activities are selected by observing workers in 

construction facilities for the selection step. To select the most frequent 
candidate activities, we conducted observations in a large-scale modular 
construction facility and a thorough analysis of the surveillance videos 
inside their facility. The analysis involves manual observation of 
randomly chosen videos from a pool of 70 h of surveillance footage, with 
a particular emphasis on 10 h of production activities. This analysis 

Fig. 1. Methodological steps to estimate ergonomic risks in our study.  

Fig. 2. The lab layout for data collection.  

Fig. 3. Creation processes of CP3D, and it corresponds to the first step in Fig. 1.  
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entails documenting various types of construction activities and tracking 
the frequency at which these activities occur, noting consistent repeti
tion of actions as if they were performed once. From the video analysis, 
we identified the 14 most frequent activities and included their number 
of occurrences in Table 4. Fig. 4 gives examples of those activities. To 
ensure that daily activities with low physical demand are not mistakenly 
identified as construction activities, the physical demand analysis [72] is 
employed to classify construction activities. As a result, the 14 most 
common work activities are simulated by a trained group of five males 
and two females. 

3.1.2. Raw data collection 
For the data collection step, performers carry out those common 

construction activities for the MoCap system data collection. According 
to the U.S. Bureau of Labor Statistics [73], female workers numbered 
10.9% of the entire construction workforce in 2020 in the U.S. There
fore, to better represent the actual gender demographic, two female and 
five male performers are recruited for construction activity simulations. 
Each subject performs at least four trials for each of the 14 activities, and 
the trials with the best quality (i.e., low number of missing markers and 
smooth marker trajectories) are used to create the CP3D dataset. It is 
worth noting that the Vicon Vue camera captures 4 different perspec
tives in different trials of the same activity for dataset diversification. 
CP3D contains a total of 7 subjects’ simulations of construction activ
ities. Each simulated trial includes approximately 10 to 14 s of MoCap 
data. The demographic information of the trained performers is listed in 
Table 5. The average height, weight, and BMI are 173 cm, 64 kg, and 
21.2, respectively. The standard deviation of the height, weight, and 
BMI are 8.2 cm, 10.6 kg, and 1.6, respectively. 

The data acquisition frequencies of the Vero and Vue cameras in the 
motion capture system are adjustable through the Vicon Nexus. With the 
MoCap system’s camera set at 100 Hz and each trial lasts around 10 to 
14 s, each trial has 1000 to 1400 frames. In this setting, each subject 
simulates 4 trials for every 14 activities; the entire dataset contains 
about 421,000 annotated frames. 

3.1.3. Raw data cleansing 
For the data cleansing step, irrelevant and incorrect data in the 

simulated construction activity data is processed. To perform data 
cleansing, the beginning and end of each trial are trimmed in the dataset 

because they contain actions irrelevant to construction tasks. In prepa
ration for annotation, any missing or mislabeled reflective markers are 
manually corrected as part of the data cleansing phase. The built-in 
functions in the Vicon MoCap software are used to process the missing 
or mislabeled markers. Since the Vicon MoCap system sometimes fails to 
capture some retro-reflective markers, the trajectories/3D coordinates 
of those markers that are not captured are not shown in the captured 
trial. The Vicon Nexus Software provides the ability to fill in gaps for the 
retro-reflective marker trajectories. This study uses "spline fill," "pattern 
fill," and "rigid body fill" to fill in gaps for more accurate results. How
ever, since the way for gap-filling is to estimate the trajectories of an 
uncaptured marker based on the trajectories of captured markers, errors 
are inherent in estimations. 

3.1.4. Processed data annotation 
Lastly, for the annotation step, we developed a software tool for the 

automated conversion of annotation files, which was utilized to convert 
MoCap data into the MSCOCO [24] format annotation. FFmpeg is 
employed to convert the trial videos into images, with a frame rate of 
100 frames per second, in order to synchronize with the MoCap data 
[74]. To facilitate the annotation process, we created a software tool in 
Python to convert Vicon MoCap data in csv format into the MSCOCO 
JSON format annotation. The software will be made public together 
with the dataset at https://github.com/xinmingliUofA/CP3D. The data 
for each subject is composed of four JSON files. These files encompass 
the 3D and 2D joint coordinates corresponding to the subject’s stance in 
each image, along with specific image information such as image size, 
filename, and action type. Additionally, the JSON files include Vicon 
Vue camera details like rotation matrix, world coordinates, focal length, 
and principal point. 

3.2. A new biomechanical model 

Vicon’s motion-capture system involves attaching retro-reflective 
markers to subjects’ skin and clothing. Vicon Nexus provides a func
tion to label markers automatically based on biomechanical models. 
However, none of the model templates provided by Vicon Nexus meets 
ERA’s needs. Thus, a template containing all the markers required for 
the REBA and RULA is created for the Vicon Nexus motion capture 
software, using a total of 48 retro-reflective markers. The template and 
name of abbreviations are shown in Fig. 5 and Table 6. Unlike the widely 
used and well-known Plugin-Gait model provided in the Vicon Nexus, 
our template provides the 3D coordinates of hands and other joints for 
ERA, which is suitable for direct 3D coordinate conversions. 

The motion capture software for collecting and processing data is the 
Vicon Nexus. Besides the algorithms mentioned in the data cleansing 
process, the other gap-filling algorithm we use in the Vicon Nexus is 
specifically designed for markers on rigid body segments. This algorithm 
only works for gap-filling with >3 markers on the segment. To reduce 
the error, we add redundant markers to our Vicon biomechanical model 
to ensure the rigid body segments have enough markers to use the gap- 
filling algorithm. As shown in Fig. 5, the markers for head, knees, and 
ankles are ’rigid body,’ with each of these segments having >3 markers 
around them. For a detailed example, only two markers on the medial 
and lateral sides of the left knee are required to capture the coordinates 
of the left knee. However, markers on performers may be blocked by 
obstacles or their body segments (self-occlusion). The rigid body algo
rithm can estimate the blocked markers based on the other unblocked 
ones. As a result, including redundant markers on rigid bodies improves 
the accuracy of data collection. 

3.3. 3D ERA approach incorporating REBA and RULA 

Similar to CVRE, our CV-based REBA method also has a modular 
design, which means that each module can be replaced with software/ 
program that functions similarly to it. Fig. 6 shows the workflow of our 

Table 4 
The 14 most common construction activities with their number of occurrences.  

Construction 
activity 

Description Number of 
occurrences 

Example 

1 kneeling and working 59 Fig. 4 (1) 
2 carrying heavy objects over 

the worker’s head 
23 Fig. 4 (2) 

3 dragging 27 Fig. 4 (3) 
4 bending over and working 

with a power drill 
82 Fig. 4 (4) 

5 holding and moving heavy 
objects with both hands 

71 Fig. 4 (5) 

6 installing windows 37 Fig. 4 (6) 
7 kneeling on one knee and 

nailing nails 
41 Fig. 4 (7) 

8 dragging and backing up 28 Fig. 4 (8) 
9 bending and grabbing an 

object on the ground 
84 Fig. 4 (9) 

10 pushing forward 48 Fig. 4 
(10) 

11 pushing objects above the 
worker’s shoulders 

33 Fig. 4 
(11) 

12 extending arms on a ladder 43 Fig. 4 
(12) 

13 reaching above the worker’s 
head 

89 Fig. 4 
(13) 

14 sitting with trunk bending 135 Fig. 4 
(14)  
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modular REBA and RULA methods. Our CV-based REBA consists of four 
functional modules: human body detection, 3D HPE, joint angle esti
mation, and REBA risk score estimation. Our method uses YOLOv7 [75] 
as the human body detection module. For the 3D HPE module, our 
approach adopts the 3D pose estimation method [41]. The articulated 
pose is selected for the joint angle estimation module because it does not 
contain unnecessary texture/body shape and background information 
[62]. The joint angle estimation module uses an 18-joint representation 
because the representation includes all the necessary joints for REBA 

and RULA. The 18 joints representation are head, nose, thorax, right/left 
shoulder, right/left elbow, right/left wrist, right/left hand, right/left 
hip, pelvis, right/left knee, and right/left ankle. CVRE employs a 16- 
joint representation due to the utilization of the Human3.6 M training 
dataset, which lacks any hand-related information. Fig. 7 shows the 18 
joint articulated pose representations in our method, with one side 
labeled for better clarity. The REBA score estimation module follows the 
calculation rules of REBA [66]. 

As shown in Fig. 7, 18 joints are articulated and used for ERA. The 18 

Fig. 4. Examples of the 14 most common construction activities.  
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joints are derived from the 48 retro-reflective markers. The head coor
dinate is calculated as the center of the RFHD and the LBHD. The left hip 
and right hip are calculated as the center of the R(L)ASI and R(L)PSI. The 

pelvis is calculated as the midpoints of the left and right hips. The thorax 
is calculated as the center of the left and right shoulder. The nose is 
calculated as the midpoint of the head and thorax. All the other joints are 
calculated as the center of their corresponding 2 retro-reflective 
markers. 

Our CV-based RULA approach uses a top-down CV HPE structure to 
estimate workers’ joints. Our approach comprises four modules: human 
detection, posture estimation, joint angle estimation, and RULA score 
calculation, where the human detection and 3D HPE models are iden
tical to our REBA approach. The RULA score calculation module is 
developed based on the algorithm defined in [67]. The joint angle cal
culations of RULA are the same as those of REBA, except that RULA 
doesn’t include joint angles for the lower body. It is worth noting that 
the load and coupling scores are not considered in our REBA and RULA 
because they are not easily accessible from visual information. 

3.3.1. Joint angle calculation 
For joint angle calculations, the sagittal plane (Ps), the frontal plane 

(Pf ), and the horizontal plane (Ph) are required. Fig. 8 demonstrates the 
positions of those three planes. Body segments are represented by 2 end 
joints, and they are in the vector form: 

Sa− b = Jb − Ja (1)  

where Sa− b represents the body segment vector pointing from joint a to 
joint b; Ja represents the 3D coordinate of joint a. The projected segment 
vector is calculated with the following equation: 

SPi
a− b = Sa− b − Sa− b •

Pi

‖Pi‖
2Pi (2) 

Table 5 
Demographic information of simulated construction activity performers.  

Performer Height (cm) Weight (kg) BMI Gender 

1 163 52 19.6 F 
2 184 76 22.4 M 
3 164 54 20.1 F 
4 170 60 20.8 M 
5 181 80 24.4 M 
6 171 61 20.9 M 
7 178 65 20.5 M  

Fig. 5. The layout of the customized biomechanical model.  

Table 6 
Names and abbreviations of markers.  

Abbreviation R(L)FHD R(L)BHD R(L)CHE R(L)SHOF R(L)SHOB R(L)UPA 

Name Right(left) forehead Right(left) back head Right(left) cheek Right(left) shoulder front 
Right(left) shoulder 
back 

Right(left) upper 
arm 

Abbreviation R(L)ELBL R(L)ELBM R(L)FRA R(L)WRL R(L)WRM R(L)HND 

Name Right(left) elbow 
lateral 

Right(left) elbow 
medial 

Right(left) front arm Right(left) wrist lateral Right(left) wrist 
medial 

Right(left) hand 

Abbreviation R(L)HNDL R(L)HNDM R(L)ASI R(L)PSI R(L)THIU R(L)THIL 

Name 
Right(left) hand 
lateral 

Right(left) hand 
medial 

Right(left) anterior superior 
iliac 

Right(left) posterior superior 
iliac 

Right(left) thigh 
upper 

Right(left) thigh 
lower 

Abbreviation R(L)KNEL R(L)KNEM R(L)TIBU R(L)TIBL R(L)ANKL R(L)ANKM 

Name 
Right(left) knee 
lateral 

Right(left) knee 
medial 

Right(left) tibia upper Right(left) tibia lower 
Right(left) ankle 
lateral 

Right(left) ankle 
medial  

Fig. 6. Workflow of our modular REBA and RULA methods.  
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where SPi
a− b is the projection of the segment vector on the plane Pi. Joint 

angles between projected segment vectors are calculated with the 
following equation: 

θPi
a− b∧c− d = arccos

(
SPi

a− b • SPi
c− d⃒

⃒SPi
a− b

⃦
⃦SPi

c− d

⃒
⃒

)

(3)  

where θPi
a− b∧c− d represents the angle between projected segment vectors 

SPi
a− b and SPi

c− d. A detailed definition of angle calculations is demonstrated 
in [66]. The calculations of side bending and twisting of some segments 
are worth mentioning. The trunk side bending angle is the angle be
tween Spelvis− thorax and SPs

pelvis− thorax. The trunk twisting angle is the angle 

between SPh
L shoulder− R shoulder and SPh

L hip− R hip. The neck side-bending angle is 

the angle between SPf
pelvis− thorax and SPf

head− thorax. The neck twisting angle is 

the angle between SPh
head− nose and SPh

L shoulder− R shoulder. The shoulder-raised 

parameter of REBA is defined by the angle between SPf
L shoulder− R shoulder 

and SPh
head− thorax. The upper arm abducted parameter is defined by the 

angle between SPf
L elbow− L shoulder and SPf

L hip− L shoulder for the left side. Simi

larly, the angle between SPf
R elbow− R shoulder and SPf

R hip− R shoulder defines the 
right side. 

3.3.2. Network and training details 
The 3D HPE module uses 3DMPPE PoseNet, a state-of-the-art CV 

algorithm capable of accurately estimating 3D joint coordinates. The 
backbone architecture of PoseNet is ResNet-50 [76] and PoseNet out
performs most state-of-the-art methods in terms of MPJPE [41]. PoseNet 
requires extensive data for training to achieve satisfactory accuracy. It 
needs at least one 2D and one 3D dataset for training because it esti
mates the camera-centered joint coordinates by separately estimating 
the 2D image coordinates and 3D depth value. Using the estimated depth 
value, the 2D image coordinates are projected back into the camera- 
centered coordinate space. Fig. 9 shows a visualized qualitative result 
of a scenario from our approach. 

At present, there are some training datasets for HPE, but most of 
these datasets only contain 2D coordinates of human key points, which 
cannot be used to estimate the 3D human joint angles accurately. As 
mentioned earlier, the Human3.6 M dataset does not meet the require
ment for precise ERA because it does not contain annotations for 3D 
coordinates of the human hands. CP3D in this study includes not only 
the 3D annotations of human hands but also the annotations of all the 
key points needed for REBA and RULA. The HPE module in our approach 
allows its deep learning method to be trained using multiple datasets. To 
enable our method to detect necessary human joints for ERA and 3D 
HPE, the training of deep learning methods includes at least one 3D 
dataset and one 2D dataset. In order to compare the performance be
tween the models trained with and without CP3D, the first model is 
trained with MuCo-3DHP and MSCOCO datasets, while the second 
model is trained with CP3D, MuCo-3DHP, and MSCOCO datasets. 

The CV-based HPE module is implemented with PyTorch, and its 
backbone is ResNet-50, pre-trained with the ImageNet dataset [77]. The 
deep learning method is trained with a start learning rate of 0.001, and 

Fig. 7. The 18 joint articulated pose representations.  

Fig. 8. The positions of frontal, sagittal, and horizontal planes.  
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the Adam optimizer [78] updates the learning rate with a mini-batch 
size of 128. Table 7 shows the training hyper-parameters and environ
ment of the models. In addition to CP3D, our method uses MSCOCO as a 
2D training dataset and MuCo-3DHP as another 3D training dataset for 
performance comparison. Around 86% of CP3D is used for training and 
the remaining 14% for testing. Since subject 7 has a BMI and height that 
are close to the average values of all the subjects, data from subject No. 7 
is used for testing, and data from subjects No. 1 through 6 is used as the 
training partition. 

3.4. Validation 

Since 3D HPE is an intermediate process of our CV-based ERA 
approach, further evaluation of our CV-based ERA is needed. Hence, our 
ERA module’s joint angles and other parameters are compared to their 
corresponding ground truth values. The evaluations are carried out for 
both deep learning models to evaluate the performance and improve
ment that CP3D brings to the generic daily activity dataset. Two models 
are used in the HPE module of our ERA method, and the effect of those 
two HPE models on ERA performance is compared. The validation 
process can be divided into three steps. 

Step 1 (validation of HPE): We compare the joint angles of a model 
trained using both MuCo-3DHP and CP3D to the ground truth joint 
angles. For CP3D, 86% (the training partition) of our dataset was used 
for training, and another 14% (the test partition) was used for testing the 
performance. The test partition we use in CP3D is independent of the 
training partition by segregating the partitions with different per
formers; thus, the similarity between the training and testing partition is 
minimized. 

The arithmetic average and the standard deviation of the absolute 
difference between the ground truth and estimated ERA parameters are 

also calculated for the 14 actions. The arithmetic average of absolute 
differences for an ERA angle/parameter is in Eq. (4). 

M(θe, θgt) =
1
N

∑N

i=1
∣θe

i − θgt
i ∣ (4)  

where N is the number of frames, θe
i and θgt

i are the estimated angle/ 
parameter and the ground truth angle/parameter of the ith frame. Hence, 
the average of differences for all the ERA angles/parameters is 
calculated. 

The mathematical representation of the standard deviation of abso
lute differences for a REBA or RULA angle/parameter is in the form of 
Eq. (5). 

σ(θe, θgt) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1

(
|θe

i − θgt
i |− μ

)2

√
√
√
√ (5)  

where N is the number of frames, ∣θe
i − θgt

i ∣ is the absolute value of the 
difference between the estimated angle/parameter and the ground truth 
angle/parameter of the ith frame. μ is the average of the absolute value of 
differences. 

Step 2 (trained model testing): The MPJPE metric is used for the 
HPE performance evaluation of those two models by comparing the 
estimated 3D coordinates of human key points with ground truth. Eq. (6) 
is the mathematical representation of the MPJPE and is the most com
mon evaluation metric used in 3D HPE. 

E(x, x͂ ) = 1
N

∑N

i=1
‖xi − x͂ i‖2 (6)  

where N is the number of joints, xi and x͂ i are the ground truth coordi
nate and the estimated coordinate of the ith joint. Finally, the MPJPEs are 
averaged over all frames. The MPJPE is meant to evaluate the perfor
mance and improvement of the CP3D dataset concerning existing 
generic 3D datasets, MuCo-3DHP, in this case. 

Step 3 (performance improvement validation): We compare the 
performance of a deep learning model trained individually using public 
datasets with a model trained jointly with CP3D. Specifically, we 
compare the model trained using both MuCo-3DHP and CP3D (Model 1) 
with the model trained using only MuCo-3DHP (Model 2). For CP3D, the 
same training partition of our dataset in Step 1 was used to train Model 
1, and the same test partition was used to test the performance of both 
Models 1 and 2. 

4. Results and discussion 

For the first step of the validation procedure (validation of HPE), 
results are listed in Table 9 and Table 10. The performance of the model 
trained with CP3D is robust because the estimations are close to the 
ground truth values. Fig. 10 shows a sample frame’s estimated pose and 
ground truth pose in the test partition. 

For the second step (trained model testing), the MPJPE of the test 
partition is listed in Table 8 for the 14 activities. From Table 8, the 
MPJPE from the deep learning model jointly trained with CP3D and 
MuCo-3DHP outperforms the MPJPE from the deep learning model 
solely trained with MuCo-3DHP for all 14 activities. Given that the 
average MPJPE of the model trained with CP3D only has 60 mm, the 
average MPJPE for the model trained with CP3D is 30 mm less than the 
model without CP3D. This means a performance increase of about 35% 
when using CP3D together with MuCo-3DHP for construction activity 
posture estimation. Hence, the results indicate that CP3D can improve 
HPE performance for construction activities. As the results suggest, the 
differences between the MPJPEs obtained from the deep learning model 
with CP3D and those without CP3D are around 50%. Hence, the HPE 
module with CP3D performs significantly better than the HPE module 

Fig. 9. A visualized qualitative result of a scenario from our approach.  

Table 7 
Hyper-parameters and training environment of the models.  

Training parameters/environment Values 

CV framework PyTorch 
CV backbone ResNet-50 pre-trained with ImageNet dataset 
start learning rate 0.001 
Optimization algorithm Adam optimizer 
Mini-batch size 128 
Epochs 25 
GPU 2 NVIDIA GA102GL RTX A5000 
CPU Intel Xeon W-2295 
Operating system Ubuntu 22.04 64-bit 
GPU driver Nvidia 530.30 with CUDA 11.8 
Programming language Python 3.9  
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without CP3D. 
For the third step (performance improvement validation), the per

formance of models 1 and 2 are compared. The entire CP3D dataset 
consists of 421,000 annotated frames/images. Since the dataset has 14% 
as a test partition, around 52,600 images are used for testing. With the 

help of the training partition, two deep learning models were trained 
separately with and without CP3D. Both deep learning models are tested 
with the test partition, and the results are compared with the corre
sponding ground truth values. The discrepancies between the ground 
truth and the estimated values from model 1 are used to compare to 
those from model 2. 

In terms of the performance improvement of CP3D over a generic 
daily activity dataset, we can see the results of the average in Table 9 and 
Table 11. From the average of the sample-to-sample difference for REBA 
trained with and without CP3D, results for all the activities demonstrate 
performance improvement for the CP3D-trained model, except for ac
tivities 6 and 7. Similarly, in terms of RULA, the CP3D-trained model 
exhibits better performance across all activities except for activity 9. 
Since all the models use COCO as part of the training datasets, MuCo- 
3DHP and CP3D are used to refer to models. 

In terms of the standard deviation of our REBA and RULA ERA ap
proaches, the results can be obtained from Table 10 and Table 12. By 
analyzing the standard deviation of the sample-to-sample differences 
between REBA models trained with and without CP3D, it is evident that 
the CP3D-trained model performs superiorly in all activities except for 
activities 6 and 7. Similarly, when examining RULA, the performance of 
the CP3D-trained model surpasses that of the non-CP3D model in all 
activities, with the exception of activities 5 and 9. The results prove the 
feasibility and performance of our CV-based ERA approaches because 

Fig. 10. Estimated pose and the ground truth pose of a sample frame in the test partition. The predictions are results from the model trained with CP3D.  

Table 8 
MPJPE (millimeters) of performance of deep learning models with and without 
CP3D.  

Dataset CP3D + MuCo+COCO (mm) MuCo+COCO (mm) 

Act. 1 54.87 103.50 
Act. 2 60.67 99.85 
Act. 3 53.28 88.52 
Act. 4 51.79 94.71 
Act. 5 57.75 96.80 
Act. 6 67.50 103.03 
Act. 7 76.88 106.39 
Act. 8 49.78 81.35 
Act. 9 55.14 78.99 
Act. 10 57.48 88.29 
Act. 11 55.68 90.55 
Act. 12 56.83 81.75 
Act. 13 66.04 79.44 
Act. 14 81.74 98.78 
Average 60.39 92.28  
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the estimated parameters and risk scores are close to ground truth 
values. More importantly, the model trained with CP3D outperforms the 
model without CP3D in the case of construction activity ERA. Compared 
to the generic daily activity dataset MuCo-3DHP, the improvement that 
CP3D brings to ERA for construction activities is significant. Despite 
some minor discrepancies, the estimated joint angles follow the same 
pattern as the ground truth. This means that our CV-based method 
trained with CP3D can estimate the 3D joint angles, including the wrist 
angle. The estimated ERA scores also follow the same pattern as the 
ground truth. In addition, the deep learning model jointly trained with 
our dataset and MuCo-3DHP is more robust than the one trained only 
with MuCo-3DHP. For example, Fig. 11 shows the estimated (prediction) 
and ground truth (GT) neck angle for 3000 consecutive frames of a trial 
from activity 1. 

According to Tables 4, 5, and 6, the deep learning model trained with 
our dataset performs better than the model trained without our dataset. 
Meanwhile, the feasibility and robustness of our ERA approach are 

demonstrated. 

5. Conclusion 

In this study, a new CV dataset, called CP3D, is created based on the 
14 most common construction tasks observed in several construction 
facilities. This dataset fills in the research gap where no comprehensive 
dataset is available for construction activities. CP3D can be used with 
other public datasets to improve the performance of HPE and ERA 
methods. It is worth noting that our dataset contains annotated hand 
information, unlike the most commonly used 3D dataset, Human3.6 M. 
The inclusion of hand annotations allows CP3D to be applied to auto
mated ERA tools such as REBA and RULA. The study also proposes a 
biomechanical skeletal model to ensure precise human body data 
acquisition concerning postural ergonomic hazards. Consequently, with 
the support of CP3D and precise human pose data acquisition, a CV- 
based ERA method, which incorporates REBA and RULA, is developed 

Table 9 
The average of the sample-to-sample difference for REBA & RULA, CP3D + MuCo-3DHP.  

Task 
Number 

Neck 
(degree) 

Neck 
Twist 

Neck 
Side 
Bend 

Trunk 
(degree) 

Trunk 
Twist 

Trunk 
Side 
Bend 

Leg 
(degree) 

Upper 
Arm 
(degree) 

Shoulder 
Raised 

Upper 
Arm 
Abducted 

Lower 
Arm 
(degree) 

Wrist 
(degree) 

Wrist 
Bend 

REBA RULA 

1 7.04 0.36 0.00 4.87 0 0.12 5.53 8.15 0 0.25 8.39 11.65 0.12 1.17 0.01 
2 9.83 0.70 0 4.25 0 0.02 5.67 11.95 0 0 14.62 29.33 0.71 0.98 0.12 
3 9.36 0.70 0 3.20 0 0.15 5.32 5.53 0 0.17 11.37 6.08 0.01 1.01 0.70 
4 8.78 0.52 0.03 6.57 0.00 0.03 3.92 6.43 0.00 0.31 6.86 11.90 0.12 1.64 0.01 
5 11.92 0.68 0.00 4.16 0 0.12 4.89 7.95 0.00 0.22 10.54 11.79 0.08 0.68 0.60 
6 11.62 0.01 0.32 7.05 0.14 0.05 4.21 19.81 0.04 0.00 15.62 13.47 0.06 2.35 0.01 
7 5.96 0.39 0.01 7.97 0.00 0.20 7.47 9.61 0.00 0.29 18.41 25.96 0.30 1.40 0.05 
8 4.21 0.08 0.05 4.00 0 0.36 4.83 10.45 0 0 10.17 16.78 0.13 1.07 0.19 
9 7.88 0.30 0.14 6.16 0.00 0.03 4.00 10.16 0.07 0.08 8.87 13.55 0.14 1.60 0.33 
10 5.60 0.16 0.00 3.18 0 0.32 6.17 13.83 0 0.21 19.05 15.89 0.14 1.10 0.44 
11 7.02 0.58 0.00 4.13 0 0.1 4.32 9.37 0.00 0.20 11.20 13.29 0.18 1.13 0.71 
12 10.15 0.59 0.00 6.03 0 0.17 2.69 8.76 0 0.00 14.92 17.56 0.03 1.47 0.06 
13 8.57 0.38 0.02 4.36 0 0.06 3.84 7.57 0.00 0.00 14.16 17.01 0.12 0.88 0.02 
14 10.84 0.47 0.00 11.10 0 0.14 14.82 11.02 0 0.20 9.50 14.45 0.17 1.20 0.00  

Table 10 
The standard deviation of the sample-to-sample difference for REBA & RULA, CP3D + MuCo-3DHP.  

Task 
Number 

Neck 
(degree) 

Neck 
Twist 

Neck 
Side 
Bend 

Trunk 
(degree) 

Trunk 
Twist 

Trunk 
Side 
Bend 

Leg 
(degree) 

Upper 
Arm 
(degree) 

Shoulder 
Raised 

Upper 
Arm 
Abducted 

Lower 
Arm 
(degree) 

Wrist 
(degree) 

Wrist 
Bend 

REBA RULA 

1 7.10 0.48 0.01 4.60 0 0.32 5.41 8.31 0 0.43 6.83 11.67 0.32 1.05 0.34 
2 4.74 0.45 0 2.87 0 0.15 4.94 9.68 0 0 11.52 15.80 0.45 0.95 0.32 
3 4.74 0.45 0 2.17 0 0.36 4.30 4.23 0 0.38 8.80 5.58 0.08 0.80 0.64 
4 5.51 0.50 0.19 5.31 0.02 0.16 2.46 5.63 0.04 0.46 5.35 11.46 0.32 1.29 0.11 
5 6.02 0.46 0.05 3.42 0 0.33 4.26 7.19 0.04 0.42 11.59 9.17 0.28 0.70 0.60 
6 7.70 0.10 0.47 5.63 0.36 0.23 3.17 19.59 0.21 0.02 13.47 14.51 0.25 1.31 0.13 
7 4.49 0.49 0.10 5.92 0.06 0.40 7.63 8.20 0.01 0.45 23.12 18.82 0.46 1.33 0.23 
8 3.46 0.27 0.23 2.60 0 0.48 3.72 8.32 0 0 7.52 13.99 0.34 0.94 0.40 
9 5.54 0.46 0.35 6.53 0.03 0.18 3.33 8.31 0.26 0.29 8.47 16.13 0.36 1.61 0.47 
10 3.21 0.37 0.02 3.17 0 0.47 5.33 13.43 0 0.41 20.26 12.67 0.35 0.90 0.50 
11 4.12 0.49 0.05 2.44 0 0.30 3.77 8.96 0.05 0.41 7.96 11.64 0.38 0.93 0.62 
12 5.21 0.49 0.02 4.35 0 0.38 2.63 6.10 0 0.03 11.36 16.41 0.18 0.99 0.25 
13 5.67 0.49 0.15 3.02 0 0.24 3.67 6.54 0.01 0.02 11.11 14.37 0.33 0.81 0.14 
14 6.61 0.50 0.01 9.52 0 0.35 7.91 8.82 0 0.41 7.74 12.17 0.38 1.02 0.07  

Fig. 11. The estimated and ground truth neck angle for a trial from activity 1.  
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and validated. 
Regarding HPE for construction workers, the deep learning model 

jointly trained with CP3D and a popular generic daily activity dataset 
(MuCo-3DHP) performs better than the deep learning model solely 
trained with the generic daily activity datasets. The MPJPE results 
suggest a 35% performance increase when using CP3D together with 
MuCo-3DHP for construction activity posture estimation. Our dataset 
can be applied to ergonomic risks and safety hazard identifications in 
construction facilities. It is complementary to the generic daily activity 
datasets because it produces higher accuracy when our dataset is used 
with those datasets. 

Regarding ERA, our CV-based REBA and RULA approaches achieve 
comparable results. In the meantime, compared to a deep learning 
model solely trained with MuCo-3DHP, our ERA approach performs 
better with a deep learning model jointly trained with CP3D and MuCo- 
3DHP. Hence, CP3D can improve the accuracy of CV-based ergonomic 
risks and safety hazard identification. 

To further promote the research of three-dimensional pose estima
tion, ergonomic risk assessment, and productivity analysis for con
struction workers, we have made CP3D and associated software code 
publicly available at https://github.com/xinmingliUofA/CP3D. 

6. Limitations and future work 

Although the deep learning models containing our dataset improve 
the performance of HPE and ERA in construction activities compared to 
the deep learning model trained with generic activities, the accuracy can 
be improved. There are three main reasons for this drawback. First, the 

comprehensiveness of our dataset can be further enhanced by including 
more activities and more performers with more diverse demographic 
backgrounds. Second, inevitable errors are introduced in the MoCap 
data gap-filling process because gap-filling is an estimation instead of 
actual values. Third, occlusion is a challenging issue that the CV-based 
single monocular camera HPE/ERA method cannot overcome because 
occlusion causes information loss of the occluded body parts. Another 
limitation is related to the MoCap setup for data collection; the test data 
is collected in a lab environment, and the environment cannot fully 
represent actual construction facilities. CP3D was acquired within a 
laboratory setting due to illumination variations, the complexity of the 
work environment leading to occlusions, and the physical and psycho
logical burdens associated with MoCap systems during data capture on a 
real construction facility, all hindering the creation of ‘in-the-wild’ 
datasets. It is worth noting that insufficient “in-the-wild” datasets for 3D 
HPE are still a challenge that needs to be solved. Similarities exist be
tween CP3D training and testing partitions (they both consist of 14 ac
tivities), so the performance improvement might not be as noticeable 
when detecting other activities. 

To overcome the limitations and further improve our dataset and 
ERA method, four improvements can be added to the study. First, we can 
include more motion capture cameras to reduce the number of occluded 
markers. Hence, reducing the number of gap fillings leads to fewer er
rors. More video cameras can improve the diversity of the dataset by 
capturing more images from different directions. The loss of information 
due to occlusion can also be solved by incorporating more monocular 
cameras into the CV-based ERA system because using other intrusive 
devices to solve this problem violates the objectives of this study. 

Table 11 
The average of the sample-to-sample difference for REBA & RULA, MuCo-3DHP.  

Task 
Number 

Neck 
(degree) 

Neck 
Twist 

Neck 
Side 
Bend 

Trunk 
(degree) 

Trunk 
Twist 

Trunk 
Side 
Bend 

Leg 
(degree) 

Upper 
Arm 
(degree) 

Shoulder 
Raised 

Upper 
Arm 
Abducted 

Lower 
Arm 
(degree) 

Wrist 
(degree) 

Wrist 
Bend 

REBA RULA 

1 8.81 0.351 0.031 12.67 0 0.35 19.79 12.78 0 0.28 15.83 14.06 0.10 1.48 0.04 
2 9.68 0.72 0.00 3.59 0.01 0.08 6.21 11.32 0.00 0.00 24.12 37.53 0.84 1.04 0.16 
3 9.21 0.75 0.00 2.89 0.00 0.22 6.88 8.02 0.00 0.32 18.84 10.24 0.05 1.32 0.82 
4 9.82 0.56 0.01 17.22 0.01 0.21 5.07 10.86 0.01 0.29 11.11 19.08 0.21 2.33 0.03 
5 12.42 0.71 0.00 3.84 0.00 0.26 6.39 11.10 0.00 0.27 26.32 13.74 0.09 0.89 0.60 
6 15.63 0.04 0.45 13.17 0.00 0.27 5.78 41.91 0.08 0.00 26.60 24.17 0.15 2.12 0.02 
7 7.12 0.38 0.15 10.43 0.00 0.30 9.84 13.26 0.00 0.49 24.27 29.11 0.33 1.33 0.08 
8 5.26 0.09 0.15 6.42 0.00 0.35 6.90 13.29 0 0.06 16.97 8.97 0.06 1.09 0.30 
9 10.03 0.34 0.01 12.97 0.00 0.30 4.11 14.23 0.00 0.21 12.65 25.86 0.21 1.71 0.31 
10 6.12 0.16 0 3.39 0.00 0.39 6.82 20.06 0 0.36 26.72 11.65 0.06 1.31 0.45 
11 7.83 0.58 0.00 3.32 0.00 0.25 5.60 14.24 0.00 0.32 25.32 14.55 0.20 1.27 0.72 
12 10.36 0.69 0.01 8.45 0 0.34 7.02 11.18 0 0.01 17.05 14.41 0.05 1.83 0.18 
13 10.89 0.36 0.05 2.70 0 0.12 5.67 10.05 0.00 0.01 19.42 12.04 0.05 0.89 0.05 
14 10.82 0.52 0 16.38 0.00 0.14 12.64 13.08 0 0.33 12.33 15.99 0.25 1.48 0.01  

Table 12 
The standard deviation of the sample-to-sample difference for REBA & RULA, MuCo-3DHP.  

Task 
Number 

Neck 
(degree) 

Neck 
Twist 

Neck 
Side 
Bend 

Trunk 
(degree) 

Trunk 
Twist 

Trunk 
Side 
Bend 

Leg 
(degree) 

Upper 
Arm 
(degree) 

Shoulder 
Raised 

Upper 
Arm 
Abducted 

Lower 
Arm 
(degree) 

Wrist 
(degree) 

Wrist 
Bend 

REBA RULA 

1 10.38 0.48 0.18 9.01 0 0.48 19.20 13.65 0 0.45 14.18 13.32 0.31 1.36 0.35 
2 4.97 0.45 0.06 2.42 0.11 0.28 5.44 10.20 0.03 0.06 17.44 14.08 0.37 0.96 0.37 
3 4.58 0.43 0.02 2.14 0.06 0.42 5.53 7.91 0.02 0.47 28.19 15.38 0.22 0.99 0.67 
4 6.86 0.50 0.11 11.77 0.10 0.40 10.63 0.11 0.46 10.17 15.56 0.41 10.63 1.68 0.18 
5 5.25 0.45 0.06 3.52 0.07 0.44 5.43 9.34 0.05 0.44 27.02 11.89 0.29 0.89 0.59 
6 10.05 0.19 0.50 8.33 0.06 0.45 3.89 42.05 0.28 0.04 17.43 23.84 0.36 1.23 0.15 
7 4.79 0.49 0.36 10.78 0.06 0.46 9.46 10.43 0.03 0.50 30.75 17.96 0.47 1.16 0.27 
8 4.48 0.29 0.36 4.31 0.01 0.48 5.14 12.57 0 0.24 13.40 9.44 0.24 0.99 0.46 
9 8.44 0.47 0.09 9.67 0.01 0.46 3.08 12.80 0.02 0.41 13.47 27.47 0.41 1.40 0.46 
10 3.72 0.37 0 2.93 0.04 0.49 5.86 17.14 0 0.48 26.09 10.19 0.23 1.11 0.50 
11 6.16 0.49 0.06 2.20 0.03 0.43 4.74 14.46 0.04 0.47 25.88 13.84 0.40 1.15 0.67 
12 5.15 0.46 0.08 5.40 0 0.47 3.92 9.64 0 0.11 15.31 12.95 0.21 1.22 0.39 
13 6.90 0.48 0.21 2.36 0 0.33 4.31 10.07 0.05 0.10 19.52 10.13 0.22 0.83 0.21 
14 6.45 0.50 0 10.54 0.01 0.34 10.12 10.08 0 0.47 12.01 14.73 0.43 1.18 0.08  
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Second, the test data can be collected on an actual construction facility. 
However, a MoCap system needs to be deployed on the construction 
facilities. For future data collection on construction facilities, it is pref
erable to use IMUs-based MoCap because the complex environment of 
construction facilities can cause severe occlusions and tripping hazards. 
Third, the quantitative performance of multi-person scenarios has not 
been obtained due to the lack of a ground truth multi-person construc
tion dataset; only qualitative results have been obtained for the verifi
cation of multi-person ERA capability. Therefore, a multi-person 
construction activity benchmark dataset with more testing activities 
should be created in the future. Fourth, CP3D will be further enriched 
with more annotated data in the future. 
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